login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294403
E.g.f.: exp(-Sum_{n>=1} sigma(n) * x^n).
4
1, -1, -5, -7, 1, 839, 4171, 54305, 102817, -4303441, -74521349, -1595325271, -20768141855, -222701825737, 1485790534411, 65580347824529, 2880129557707201, 67631429234674655, 1543424936566399867, 23542870556917468889, 119940955037901088321
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A000203(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j)^2. - Ilya Gutkovskiy, Aug 17 2021
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, sigma(k)*x^k))))
CROSSREFS
E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): A294402 (k=0), this sequence (k=1), A294404 (k=2).
Sequence in context: A061415 A196847 A087455 * A192040 A117759 A021640
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 30 2017
STATUS
approved