login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286879
Number of minimal dominating sets in the n-Andrásfai graph.
3
2, 5, 28, 66, 140, 272, 489, 828, 1339, 2088, 3160, 4662, 6726, 9512, 13211, 18048, 24285, 32224, 42210, 54634, 69936, 88608, 111197, 138308, 170607, 208824, 253756, 306270, 367306, 437880, 519087, 612104, 718193, 838704, 975078, 1128850, 1301652, 1495216, 1711377
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Andrásfai Graph
Eric Weisstein's World of Mathematics, Minimal Dominating Set
FORMULA
From Eric W. Weisstein, Aug 21 2017: (Start)
a(n) = (3*n - 1)*(n^4 - 13*n^3 + 164*n^2 - 572*n + 960)/120 for n > 3.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 9.
G.f.: (x (2 - 7 x + 28 x^2 - 67 x^3 + 94 x^4 - 75 x^5 + 29 x^6 + x^7 - 2 x^8))/(-1 + x)^6.
(End)
MAPLE
A286879:=n->(3*n - 1)*(n^4 - 13*n^3 + 164*n^2 - 572*n + 960)/120: 2, 5, 28, seq(A286879(n), n=4..100); # Wesley Ivan Hurt, Nov 30 2017
MATHEMATICA
Table[Piecewise[{{2, n == 1}, {5, n == 2}, {28, n == 3}}, (3 n - 1) (n^4 - 13 n^3 + 164 n^2 - 572 n + 960)/120], {n, 20}]
Join[{2, 5, 28}, LinearRecurrence[{6, -15, 20, -15, 6, -1}, {66, 140, 272, 489, 828, 1339}, 20]] (* Eric W. Weisstein, Aug 21 2017 *)
CoefficientList[Series[(2 - 7 x + 28 x^2 - 67 x^3 + 94 x^4 - 75 x^5 + 29 x^6 + x^7 - 2 x^8)/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Aug 21 2017 *)
PROG
(Magma) [2, 5, 28] cat [(3*n-1)*(n^4-13*n^3+164*n^2-572*n+ 960)/120: n in [4..40]]; // Vincenzo Librandi, Sep 03 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Aug 02 2017
EXTENSIONS
a(10)-a(20) from Andrew Howroyd, Aug 19 2017
a(21) and higher from Eric W. Weisstein, Aug 21 2017
STATUS
approved