login
A112698
Partial sum of (Catalan numbers A000108 multiplied by powers of 4).
1
1, 5, 37, 357, 3941, 46949, 587621, 7616357, 101332837, 1375876965, 18987759461, 265554114405, 3755416368997, 53610591434597, 771525112379237, 11181285666076517, 163041321978836837, 2390321854565988197
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0,..,n} C(k)*4^k, n>=0, with C(n):=A000108(n).
G.f.: c(4*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = (17*n-7)*a(n-1) - 8*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 16^(n+1)/(15*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-16*x])/(8*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
With[{nn=20}, Accumulate[4^Range[0, nn] CatalanNumber[Range[0, nn]]]] (* Harvey P. Dale, Mar 11 2023 *)
PROG
(PARI) x='x+O('x^50); Vec((1-sqrt(1-16*x))/(8*x*(1-x))) \\ G. C. Greubel, Mar 17 2017
CROSSREFS
Fifth column (m=4) of triangle A112705.
Sequence in context: A004208 A198077 A208813 * A234953 A344051 A025168
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 31 2005
EXTENSIONS
Definition clarified by Harvey P. Dale, Mar 11 2023
STATUS
approved