login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112699
Partial sum of Catalan numbers A000108 multiplied by powers of 5.
1
1, 6, 56, 681, 9431, 140681, 2203181, 35718806, 594312556, 10090406306, 174113843806, 3044524000056, 53828703687556, 960689055250056, 17284175383375056, 313147365080640681, 5708299647795484431
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0,..,n} C(k)*5^k, n>=0, with C(n):=A000108(n).
G.f.: c(5*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Recurrence: (n+1)*a(n) = 3*(7*n-3)*a(n-1) - 10*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 20^(n+1)/(19*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-20*x])/(10*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
PROG
(PARI) x='x+O('x^50); Vec((1-sqrt(1-20*x))/(10*x*(1-x))) \\ G. C. Greubel, Mar 17 2017
CROSSREFS
Sixth column (m=5) of triangle A112705.
Sequence in context: A053336 A290788 A215507 * A093197 A303921 A052317
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 31 2005
STATUS
approved