login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112700
Partial sum of Catalan numbers A000108 multiplied by powers of 6.
1
1, 7, 79, 1159, 19303, 345895, 6504487, 126597031, 2528447911, 51526205863, 1067116097959, 22394503831975, 475191351108007, 10177980935594407, 219758235960500647, 4778128782752211367, 104526001924311998887
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(k)*6^k, with C(n):=A000108(n).
G.f.: c(6*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Conjecture: (n+1)*a(n) +(-25*n+11)*a(n-1) +12*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 08 2016, verified by Robert Israel, Jun 28 2018
0 = a(n)*(+576*a(n+1) -636*a(n+2) +60*a(n+3)) +a(n+1)*(-564*a(n+1) +613*a(n+2) -61*a(n+3)) +a(n+2)*(+11*a(n+2) +a(n+3)) for all n>=0. - Michael Somos, Jun 28 2018
MAPLE
ListTools:-PartialSums([seq(binomial(2*n, n)/(n+1)*6^n, n=0..50)]); # Robert Israel, Jun 28 2018
MATHEMATICA
Accumulate[Table[ (CatalanNumber@ n)*6^n, {n, 0, 16}]] (* James C. McMahon, Jun 11 2024 *)
CROSSREFS
Seventh column (m=6) of triangle A112705.
Sequence in context: A014293 A176792 A186377 * A365039 A375173 A365782
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 31 2005
STATUS
approved