OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..693
FORMULA
a(n) = Sum_{k=0..n} C(k)*7^k, n>=0, with C(n):=A000108(n).
G.f.: c(7*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Conjecture: (n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 08 2016
Conjecture verified using the d.e. (28*x^3-29*x^2+x)*y' + (42*x^2-16*x+1)*y=1 satisfied by the g.f. - Robert Israel, Aug 04 2020
MAPLE
f:= gfun:-rectoproc({(n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0, a(0)=1, a(1)=8}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Aug 04 2020
MATHEMATICA
CatalanNumber[#]*7^#& /@ Range[0, 20] // Accumulate (* Jean-François Alcover, Aug 29 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 31 2005
STATUS
approved