login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112697
Partial sum of Catalan numbers (A000108) multiplied by powers of 3.
1
1, 4, 22, 157, 1291, 11497, 107725, 1045948, 10428178, 106126924, 1097913928, 11511677470, 122057782762, 1306480339462, 14098243951822, 153208673236237, 1675240428936307, 18417589741637077, 203464608460961377
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(k)*3^k, n>=0, with C(n) = A000108(n).
G.f.: c(3*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers (A000108).
Recurrence: (n+1)*a(n) = (13*n-5)*a(n-1) - 6*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 12^(n+1)/(11*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-12*x])/(6*x)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
PROG
(PARI) x='x+O('x^50); Vec((1-sqrt(1-12*x))/(6*x*(1-x))) \\ G. C. Greubel, Mar 17 2017
CROSSREFS
Fourth column (m=3) of triangle A112705.
Cf. A000108.
Sequence in context: A052650 A198053 A197925 * A327994 A113717 A379933
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 31 2005
STATUS
approved