login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182189
a(n) = 6*a(n-1) - a(n-2) - 4 with n > 1, a(0)=1, a(1)=3.
8
1, 3, 13, 71, 409, 2379, 13861, 80783, 470833, 2744211, 15994429, 93222359, 543339721, 3166815963, 18457556053, 107578520351, 627013566049, 3654502875939, 21300003689581, 124145519261543, 723573111879673
OFFSET
0,2
COMMENTS
If p is a prime of the form 8*n +- 1 then a(p) == 3 (mod p); if p is a prime of the form 8*n +- 3 then a(p) == -1 (mod p).
From Pedro Caceres, Dec 30 2017:
The terms a(n) > 1 satisfy a(n)^5 + b(n)^5 = c(n)^5 + d(n)^5 where b(n) = a(n) - 2, c(n) = (a(n)-1) + i*ceiling((a(n)-1)*sqrt(2)), and d(n) is the conjugate of c(n), where i is the imaginary unit. Note that Re(c(n)) is A001542(n) and Im(d(n)) is A001541(n). (End)
FORMULA
G.f.: (1-4*x-x^2)/((1-x)*(1-6*x+x^2)). - Bruno Berselli, Jun 07 2012
a(n) = 1 + A000129(2*n). - G. C. Greubel, May 24 2021
MATHEMATICA
m = -11; n = -1; c = 0;
list3 = Reap[While[c < 22, t = 6 n - m - 4; Sow[t]; m = n; n = t; c++]][[2, 1]]
CoefficientList[Series[(1-4*x-x^2)/((1-x)*(1-6*x+x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 26 2012 *)
1 + Fibonacci[2*Range[0, 40], 2] (* G. C. Greubel, May 24 2021 *)
PROG
(Magma) I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)-4: n in [1..41]]; // Bruno Berselli, Jun 07 2012
(PARI) my(x='x+O('x^40)); Vec((1-4*x-x^2)/((1-x)*(1-6*x+x^2))) \\ Altug Alkan, Dec 30 2017
(Sage) [1 + lucas_number1(2*n, 2, -1) for n in (0..40)] # G. C. Greubel, May 24 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kenneth J Ramsey, Apr 17 2012
STATUS
approved