login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100284
Expansion of (1-4*x-x^2)/((1-x)*(1-4*x-5*x^2)).
4
1, 1, 5, 21, 105, 521, 2605, 13021, 65105, 325521, 1627605, 8138021, 40690105, 203450521, 1017252605, 5086263021, 25431315105, 127156575521, 635782877605, 3178914388021, 15894571940105, 79472859700521, 397364298502605
OFFSET
0,3
COMMENTS
Binomial transform of A054881.
Binomial transform of A179607. - Johannes W. Meijer, Aug 01 2010
FORMULA
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3).
a(n) = (1/6)*(3 + 5^n + 2*(-1)^n).
E.g.f.: (1/6)*(exp(5*x) + 3*exp(x) + 2*exp(-x)). - G. C. Greubel, Feb 06 2023
MATHEMATICA
CoefficientList[Series[(1-4x-x^2)/((1-x)(1-4x-5x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{5, 1, -5}, {1, 1, 5}, 30] (* Harvey P. Dale, Apr 01 2013 *)
PROG
(Magma) [(5^n +2*(-1)^n +3)/6: n in [0..40]]; // G. C. Greubel, Feb 06 2023
(SageMath)
def A100284(n): return (1/6)*(5^n +1 +4*((n+1)%2))
[A100284(n) for n in range(41)] # G. C. Greubel, Feb 06 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 11 2004
STATUS
approved