login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100283
a(n) = floor(p*(n+1)) - floor(p*(n)) - 1 where p = Padovan plastic number = 1.324718... (cf. A060006).
1
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
0,1
COMMENTS
A rabbit-like sequence generated by the Padovan plastic number.
The well-known rabbit sequence is generated by taking the difference between the nearest integer less than phi*(n+1) minus the nearest integer less than phi*(n). If this value is 2, then the n-th rabbit sequence value is one. If this value is 1, the n-th rabbit sequence is 0. The sequence given is calculated in a similar manner, but using the plastic constant = 1.324717957244... instead of phi = 1.618033... = (1+sqrt(5))/2. It is 0001 followed by 11 copies of 001 followed by 0001 followed by 12 copies of 001 followed by 11 copies of 001 followed by similar patterns of 0001 followed by n copies of 001 where n is 11 or 12.
REFERENCES
Midhat J. Gazale, Gnomon: From Pharaohs to Fractals, Princeton University Press, 1999
LINKS
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
PROG
(PARI) p=(sqrt(23/108)+.5)^(1/3) + (abs( sqrt(23/108) -.5))^(1/3); for(n = 0, n = 200, r = floor(p*(n+1)) - floor(p*n) -1; print (r ))
CROSSREFS
KEYWORD
nonn
AUTHOR
John Lien, Dec 28 2004
EXTENSIONS
Partially edited by N. J. A. Sloane, Jun 13 2007
STATUS
approved