|
|
A102215
|
|
Expansion of Pi^2/50 in golden base (i.e., in irrational base phi = (1 + sqrt(5))/2).
|
|
1
|
|
|
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..109.
D. H. Bailey, A compendium of BBP-type formulas for mathematical constants.
J. Borwein and M. Chamberland, A golden example.
|
|
EXAMPLE
|
Pi^2/50 = 1/phi^4 + 1/phi^7 + 1/phi^9 + 1/phi^12 + ... thus the phinary expansion of Pi^2/50 is 0.0001001010010...
|
|
MATHEMATICA
|
Join[{0, 0, 0}, RealDigits[Pi^2/50, GoldenRatio, 120][[1]]] (* Harvey P. Dale, Nov 06 2011 *)
|
|
PROG
|
(PARI)
default(realprecision, 1000);
default(format, "g.28");
b=1.0/( (1+sqrt(5))/2 ); /* inverse base */
d=1.0; /* value of digit */
C=Pi^2/50; /* Number to be converted */
{ for (n=1, 1000,
d *= b; /* value of digit == b^n */
if ( d<=C,
C-=d;
print1("1, ");
, /* else */
print1("0, ");
);
); }
C /* check remaining value (should be well within precision) */
/* Joerg Arndt, Jan 24 2011 */
|
|
CROSSREFS
|
Sequence in context: A100283 A320927 A134391 * A288508 A262588 A234577
Adjacent sequences: A102212 A102213 A102214 * A102216 A102217 A102218
|
|
KEYWORD
|
base,cons,nonn
|
|
AUTHOR
|
Benoit Cloitre, Feb 18 2005
|
|
STATUS
|
approved
|
|
|
|