|
|
A341853
|
|
Number of triangulations of a fixed pentagon with n internal nodes.
|
|
3
|
|
|
5, 21, 105, 595, 3675, 24150, 166257, 1186680, 8717940, 65572325, 502957455, 3922142574, 31021294850, 248377859100, 2010068042625, 16421073515280, 135277629836412, 1122788441510820, 9381874768828100, 78871575753345375, 666727830129370275
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
These may be called rooted [n,2] triangulations.
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..500
|
|
FORMULA
|
a(n) = 210*binomial(4*n+5, n)/((3*n+6)*(3*n+7)).
|
|
EXAMPLE
|
The a(0) = 5 triangulations correspond with the dissections of a pentagon by nonintersecting diagonals into 3 triangles. Although there is only one essentially different dissection, each rotation is counted separately here.
|
|
MATHEMATICA
|
Array[210 Binomial[4 # + 5, #]/((3 # + 6)*(3 # + 7)) &, 21, 0] (* Michael De Vlieger, Feb 22 2021 *)
|
|
PROG
|
(PARI) a(n) = {210*binomial(4*n+5, n)/((3*n+6)*(3*n+7))}
|
|
CROSSREFS
|
Column k=2 of A146305.
Sequence in context: A097175 A100284 A337168 * A260845 A325157 A218299
Adjacent sequences: A341850 A341851 A341852 * A341854 A341855 A341856
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Andrew Howroyd, Feb 21 2021
|
|
STATUS
|
approved
|
|
|
|