login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-4*x-x^2)/((1-x)*(1-4*x-5*x^2)).
4

%I #13 Feb 06 2023 20:15:34

%S 1,1,5,21,105,521,2605,13021,65105,325521,1627605,8138021,40690105,

%T 203450521,1017252605,5086263021,25431315105,127156575521,

%U 635782877605,3178914388021,15894571940105,79472859700521,397364298502605

%N Expansion of (1-4*x-x^2)/((1-x)*(1-4*x-5*x^2)).

%C Binomial transform of A054881.

%C Binomial transform of A179607. - _Johannes W. Meijer_, Aug 01 2010

%H G. C. Greubel, <a href="/A100284/b100284.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,1,-5)

%F a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3).

%F a(n) = (1/6)*(3 + 5^n + 2*(-1)^n).

%F E.g.f.: (1/6)*(exp(5*x) + 3*exp(x) + 2*exp(-x)). - _G. C. Greubel_, Feb 06 2023

%t CoefficientList[Series[(1-4x-x^2)/((1-x)(1-4x-5x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{5,1,-5},{1,1,5},30] (* _Harvey P. Dale_, Apr 01 2013 *)

%o (Magma) [(5^n +2*(-1)^n +3)/6: n in [0..40]]; // _G. C. Greubel_, Feb 06 2023

%o (SageMath)

%o def A100284(n): return (1/6)*(5^n +1 +4*((n+1)%2))

%o [A100284(n) for n in range(41)] # _G. C. Greubel_, Feb 06 2023

%Y Cf. A054881, A100285, A100286, A179607.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Nov 11 2004