login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179607
Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x - 4*x^2)/(1 - 2*x - 8*x^2).
2
1, 4, 12, 56, 208, 864, 3392, 13696, 54528, 218624, 873472, 3495936, 13979648, 55926784, 223690752, 894795776, 3579117568, 14316601344, 57266143232, 229065097216, 916259340288, 3665039458304, 14660153638912, 58640622944256
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to just one red king vector, i.e., A[5] vector, with decimal [binary] value 325 [1,0,1,0,0,0,1,0,1]. This vectors leads for the corner squares to A083424 and for the side squares to A003947.
The inverse binomial transform of A100284 (without the first leading 1).
FORMULA
G.f.: (1 + 2*x - 4*x^2)/(1 - 2*x - 8*x^2).
a(n) = 2*a(n-1) + 8*a(n-2), for n >= 3, with a(0) = 1, a(1) = 4 and a(2) = 12.
a(n) = 5*(4)^(n)/6 - (-2)^(n)/3 for n >= 1 and a(0) = 1.
a(n) = 4*A083424(n-1), n>0. - R. J. Mathar, Mar 08 2021
MAPLE
with(LinearAlgebra): nmax:=24; m:=5; A[1]:= [0, 1, 0, 1, 1, 0, 0, 0, 0]: A[2]:= [1, 0, 1, 1, 1, 1, 0, 0, 0]: A[3]:= [0, 1, 0, 0, 1, 1, 0, 0, 0]: A[4]:= [1, 1, 0, 0, 1, 0, 1, 1, 0]: A[5]:= [1, 0, 1, 0, 0, 0, 1, 0, 1]: A[6]:= [0, 1, 1, 0, 1, 0, 0, 1, 1]: A[7]:= [0, 0, 0, 1, 1, 0, 0, 1, 0]: A[8]:= [0, 0, 0, 1, 1, 1, 1, 0, 1]: A[9]:= [0, 0, 0, 0, 1, 1, 0, 1, 0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 8}, {4, 12}, 30]] (* Harvey P. Dale, Mar 01 2012 *)
CROSSREFS
Cf. A179597 (central square).
Sequence in context: A298680 A149421 A051195 * A149422 A149423 A295496
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Jul 28 2010
STATUS
approved