login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179605
Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 3*x - 2*x^2)/(1 - 2*x - 9*x^2 - 2*x^3).
2
1, 5, 17, 81, 325, 1413, 5913, 25193, 106429, 451421, 1911089, 8097825, 34298293, 145299189, 615478665, 2607246617, 11044399597, 46784976077, 198184041761, 839521667409, 3556269662821, 15064602415845, 63814675131897
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king toes crazy and turns into a red king, see A179596.
The sequence above corresponds to 4 red king vectors, A[5] vectors, with decimal [binary] values 327 [1,0,1,0,0,0,1,1,1], 333 [1,0,1,0,0,1,1,0,1], 357 [1,0,1,1,0,0,1,0,1] and 453 [1,1,1,0,0,0,1,0,1]. These vectors lead for the corner squares to A179604 and for the side squares to A015448.
FORMULA
G.f.: ( -1 - 3*x + 2*x^2 ) / ( (2*x+1)*(x^2 + 4*x - 1) ).
a(n) = 2*a(n-1) + 9*a(n-2) + 2*a(n-3) with a(0)=1, a(1)=5 and a(2)=17.
a(n) = (-4/11)*(-1/2)^(-n) + ((17+41*A)*A^(-n-1) + (17+41*B)*B^(-n-1))/110 with A = (-2+sqrt(5)) and B =(-2-sqrt(5)).
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n+1)/(A001076(n)*sqrt(5) - A001077(n)).
MAPLE
with(LinearAlgebra): nmax:=21; m:=5; A[1]:= [0, 1, 0, 1, 1, 0, 0, 0, 0]: A[2]:= [1, 0, 1, 1, 1, 1, 0, 0, 0]: A[3]:= [0, 1, 0, 0, 1, 1, 0, 0, 0]: A[4]:= [1, 1, 0, 0, 1, 0, 1, 1, 0]: A[5]:= [1, 0, 1, 1, 0, 0, 1, 0, 1]: A[6]:= [0, 1, 1, 0, 1, 0, 0, 1, 1]: A[7]:= [0, 0, 0, 1, 1, 0, 0, 1, 0]: A[8]:= [0, 0, 0, 1, 1, 1, 1, 0, 1]: A[9]:= [0, 0, 0, 0, 1, 1, 0, 1, 0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
CROSSREFS
Cf. A001076, A001077, A015448, A179596, A179597 (central square), A179604.
Sequence in context: A359206 A149749 A149750 * A149751 A303713 A188231
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Jul 28 2010
STATUS
approved