login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337166
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(1 + x - BesselI(0,2*sqrt(x))).
1
1, 0, -1, -1, 17, 99, -926, -20385, 25969, 7206059, 90298826, -3271747557, -149187119280, 236884125841, 233237751740057, 7110791842650002, -293292401726383791, -32980038867059802549, -498084376275585698222, 114298048468067933019627, 9072219653673352772098960
OFFSET
0,5
FORMULA
a(0) = 1; a(n) = -(1/n) * Sum_{k=0..n-2} binomial(n,k)^2 * (n-k) * a(k).
MAPLE
A337166 := proc(n)
option remember ;
if n = 0 then
1;
else
add(binomial(n, k)^2*(n-k)*procname(k), k=0..n-2) ;
-%/n ;
end if;
simplify(%) ;
end proc:
seq(A337166(n), n=0..40) ; # R. J. Mathar, Aug 19 2022
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[1 + x - BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Binomial[n, k]^2 (n - k) a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 28 2021
STATUS
approved