login
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(1 + x - BesselI(0,2*sqrt(x))).
1

%I #9 Aug 19 2022 04:37:58

%S 1,0,-1,-1,17,99,-926,-20385,25969,7206059,90298826,-3271747557,

%T -149187119280,236884125841,233237751740057,7110791842650002,

%U -293292401726383791,-32980038867059802549,-498084376275585698222,114298048468067933019627,9072219653673352772098960

%N Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(1 + x - BesselI(0,2*sqrt(x))).

%F a(0) = 1; a(n) = -(1/n) * Sum_{k=0..n-2} binomial(n,k)^2 * (n-k) * a(k).

%p A337166 := proc(n)

%p option remember ;

%p if n = 0 then

%p 1;

%p else

%p add(binomial(n,k)^2*(n-k)*procname(k),k=0..n-2) ;

%p -%/n ;

%p end if;

%p simplify(%) ;

%p end proc:

%p seq(A337166(n),n=0..40) ; # _R. J. Mathar_, Aug 19 2022

%t nmax = 20; CoefficientList[Series[Exp[1 + x - BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2

%t a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Binomial[n, k]^2 (n - k) a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 20}]

%Y Cf. A061696, A293037, A336209.

%K sign

%O 0,5

%A _Ilya Gutkovskiy_, Jan 28 2021