The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337167 a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1). 5
 1, 4, 25, 199, 1795, 17422, 177463, 1870960, 20241403, 223438852, 2506596547, 28494103183, 327507800725, 3799735202218, 44440058006593, 523388751658831, 6201937444137619, 73888034816382820, 884517283667145259, 10634234680321209373, 128347834921058404249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A005159. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..901 N. J. A. Sloane, Transforms FORMULA G.f. A(x) satisfies: A(x) = 1 / (1 - x) + 3*x*A(x)^2. G.f.: (1 - sqrt(1 - 12*x / (1 - x))) / (6*x). E.g.f.: exp(7*x) * (BesselI(0,6*x) - BesselI(1,6*x)). a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * Catalan(k). a(n) = 2F1([1/2, -n], [2], -12), where 2F1 is the hypergeometric function. D-finite with recurrence (n+1) * a(n) = 2 * (7*n-3) * a(n-1) - 13 * (n-1) * a(n-2) for n > 1. - Seiichi Manyama, Jan 31 2021 a(n) ~ 13^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 14 2021 MATHEMATICA a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}] Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}] Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}] PROG (PARI) {a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ Seiichi Manyama, Jan 31 2021 (PARI) my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ Seiichi Manyama, Feb 01 2021 CROSSREFS Column k=3 of A340968. Cf. A000108, A005159, A007317, A162326, A337169, A338979. Sequence in context: A212694 A182953 A327074 * A140094 A284859 A144647 Adjacent sequences:  A337164 A337165 A337166 * A337168 A337169 A337170 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 28 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 20:32 EDT 2021. Contains 343668 sequences. (Running on oeis4.)