login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140094 G.f. satisfies: A(x) = x/(1 - A(A(A(x)))). 4
1, 1, 4, 25, 199, 1855, 19387, 221407, 2717782, 35455981, 487672243, 7029980797, 105732907498, 1653377947393, 26805765569863, 449568735630517, 7785116448484318, 138980739891821269, 2554369130466577138 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Paul D. Hanna, Table of n, a(n), n = 1..100.

FORMULA

G.f. A(x) satisfies:

(1) A(x) = Series_Reversion(x - x*A(A(x))).

(2) A(x) = x + Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(x))^n / n!.

(3) A(x) = x*exp( Sum_{n=1} d^(n-1)/dx^(n-1) x^n * A(A(x))^n/x / n! ).

Define A_{n} such that A_{n+1}(x) = A( A_{n}(x) ) with A_0(x) = x,

then A_{n}(x) = A_{n-1}/[1 - A_{n+2}(x)] ;

thus A_{n}(x) = 1 - A_{n-3}(x) / A_{n-2}(x).

G.f. A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations starting with:

A = 1 + x*A*C;

B = A + x*B*D;

C = B + x*C*E;

D = C + x*D*F;

E = D + x*E*G; ...

EXAMPLE

G.f.: A(x) = x + x^2 + 4*x^3 + 25*x^4 + 199*x^5 + 1855*x^6 + 19387*x^7 +...

Iterations A_{n+1}(x) = A( A_{n}(x) ) are related as follows.

A_2(x) = 1 - Series_Reversion( A(x) ) / x;

A_3(x) = 1 - x / A(x);

A_4(x) = 1 - A(x) / A_2(x);

A_5(x) = 1 - A_2(x) / A_3(x);

A_6(x) = 1 - A_3(x) / A_4(x); ...

where the iterations of A(x) begin:

A_2(x) = x + 2*x^2 + 10*x^3 + 71*x^4 + 616*x^5 + 6119*x^6 + 67210*x^7 +...;

A_3(x) = x + 3*x^2 + 18*x^3 + 144*x^4 + 1365*x^5 + 14544*x^6 +...;

A_4(x) = x + 4*x^2 + 28*x^3 + 250*x^4 + 2584*x^5 + 29584*x^6 +...;

A_5(x) = x + 5*x^2 + 40*x^3 + 395*x^4 + 4435*x^5 + 54515*x^6 +...;

A_6(x) = x + 6*x^2 + 54*x^3 + 585*x^4 + 7104*x^5 + 93555*x^6 +...;

...

Iterations are also related by continued fractions:

A(x) = x/(1 - A_2(x)/(1 - A_4(x)/(1 - A_6(x)/(1 -...)))) ;

A_2(x) = A(x)/(1 - A_3(x)/(1 - A_5(x)/(1 - A_7(x)/(1 -...)))).

PROG

(PARI) {a(n)=local(A); if(n<0, 0, n++; A=x+O(x^2); for(i=2, n, A=x/(1-subst(A, x, subst(A, x, A)))); polcoeff(A, n))}

CROSSREFS

Cf. A140095, A088714.

Cf. A088717, A091713, A120971, A139702.

Sequence in context: A182953 A327074 A337167 * A284859 A144647 A215505

Adjacent sequences:  A140091 A140092 A140093 * A140095 A140096 A140097

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 08 2008, May 20 2008

EXTENSIONS

Name, formulas, and examples revised by Paul D. Hanna, Feb 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 08:10 EDT 2021. Contains 347577 sequences. (Running on oeis4.)