login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182953
G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^3.
4
1, 1, 4, 25, 197, 1797, 18178, 198937, 2318858, 28487593, 366129764, 4896068759, 67843403960, 971032668429, 14319735032679, 217136949146091, 3379973833321141, 53936100582832901, 881318215466710693, 14731508761600217914
OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
* A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(3m+3)} * x^(m+1)/(m+1)! );
* A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(3m)}*x^k]*x^m/m);
which are equivalent.
Recurrence:
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,3k).
Given g.f. A(x), then G(x) = 1 + x*A(x)^3 satisfies G(x/G(x)) = 1 + x*G(x)^2 and G(x) is the g.f. of A147664.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 197*x^4 + 1797*x^5 +...
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 100*x^3 + 801*x^4 + 7296*x^5 + 73174*x^6 +...
A(x*A(x)) = 1 + x + 5*x^2 + 37*x^3 + 333*x^4 + 3389*x^5 + 37634*x^6 +...
A(x*A(x))^3 = 1 + 3*x + 18*x^2 + 142*x^3 + 1311*x^4 + 13461*x^5 +...
The g.f. satisfies:
log(A(x)) = A(x)^3*x + {d/dx x*A(x)^6}*x^2/2! + {d^2/dx^2 x^2*A(x)^9}*x^3/3! + {d^3/dx^3 x^3*A(x)^12}*x^4/4! +...
PROG
(PARI) {a(n)=local(A=1+sum(i=1, n-1, a(i)*x^i+x*O(x^n)));
for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n-m, binomial(m+k-1, k)*polcoeff(A^(3*m), k)*x^k)*x^m/m)+x*O(x^n))); polcoeff(A, n)}
(PARI) {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 3*k))))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 15 2010
STATUS
approved