login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260481
Field discriminant of n-th composite, f(f(...f(r)...)), where r = 1 and f(x) is the continued fraction [x,x,x, ...].
5
1, 5, 725, 494613125, 237200374061503726953125, 57083011552674242150083383668890855252740781729278564453125
OFFSET
0,2
COMMENTS
f(x) = [x,x,x, ...] = (1/2) (x + sqrt((4 + x^2));
f(f(x)) = (1/4)(x + sqrt(4 + x^2)) + (1/2)sqrt(4 + (1/4)(x + sqrt(4 + x^2))^2))/2.
Divisibility conjecture: a(n)^2 | a(n+1), for n>=1; see Example.
LINKS
EXAMPLE
f(1) = (1 + sqrt(5))/2 = golden ratio;
f(f(1)) = (1 + sqrt(5) + sqrt(22 + 2 sqrt(5)))/4;
D(f(1)) = 5; D(f(f(1))) = 725;
a(2)/(a(1)^2) = 725/5^2 = 29;
a(3)/(a(2)^2) = 941;
a(4)/(a(3)^2) = 969581.
(Regarding n = 0, the zeroth composite of f is taken to be 1.)
MATHEMATICA
s[1] = x; t[1] = 1; z = 8;
s[n_] := s[n] = s[n - 1]^2 - t[n - 1]^2; t[n_] := t[n] = s[n - 1]*t[n - 1];
coeffs[n_] := Apply[Riffle, Map[DeleteCases[#, 0] &, CoefficientList[{s[n], t[n]}, x]]];
polys = Table[Root[Total[Reverse[coeffs[n]] #^(Range[1 + (2^(n - 1))] - 1)] &, 1(*2^(n-1)*)], {n, z}];
m = Map[NumberFieldDiscriminant, polys] (* Peter J. C. Moses, Jul 30 2015 *)
Table[m[[n + 1]]/m[[n]]^2, {n, 1, z - 1}] (* divisibility conjecture *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 13 2015
STATUS
approved