login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107768
Integers p*q*r such that p*q and q*r are both golden semiprimes (A108540). Integers p*q*r such that p = A108541(j), q = A108542(j) = A108541(k) and r = A108542(k).
3
30, 1309, 50209, 299423, 4329769, 4661471, 13968601, 19867823, 49402237, 90419171, 95575609, 230236057, 289003081, 4195692049, 7752275351, 8857002097, 9759031489, 10956612769, 12930672109, 12991059409, 13494943703, 13807499677, 15195694009, 18253659551, 20769940297
OFFSET
1,1
COMMENTS
Golden 3-almost primes.
Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. How long a chain is possible of the form p(1) * p(2) * p(3) * ... * p(n) where each successive pair of values are factors of a golden semiprime? That is, if Zumkeller's golden semiprimes are the 2-dimensional case and the present sequence is the 3-dimensional case, is there a maximum n for an n-dimensional case?
LINKS
EXAMPLE
30 = 2 * 3 * 5, where both 2*3=6 and 3*5=15 are golden semiprimes.
1309 = 7 * 11 * 17.
50209 = 23 * 37 * 59.
MATHEMATICA
f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; g[p_] := Module[{ p1 = f[p]}, If[p1 == 0, 0, p2 = f[p1]; If[p2 == 0, 0, p*p1*p2]]]; seq={}; p=1; Do[p = NextPrime[p]; gp = g[p]; If[gp > 0, AppendTo[seq, gp]], {300}]; seq (* Amiram Eldar, Nov 29 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 11 2005
EXTENSIONS
More terms from Amiram Eldar, Nov 29 2019
STATUS
approved