login
A101427
Number of different cuboids with volume (pq)^n, where p,q are distinct prime numbers.
6
1, 2, 8, 19, 42, 78, 139, 224, 350, 517, 744, 1032, 1405, 1862, 2432, 3115, 3942, 4914, 6067, 7400, 8954, 10729, 12768, 15072, 17689, 20618, 23912, 27571, 31650, 36150, 41131, 46592, 52598, 59149, 66312, 74088, 82549, 91694, 101600, 112267, 123774
OFFSET
0,2
COMMENTS
Subsequence of A034836, which gives the number of cuboids for volume n.
LINKS
Geoffrey B. Campbell, Vector Partition Identities for 2D, 3D and nD Lattices, arXiv:2302.01091 [math.CO], 2023.
FORMULA
If n is a multiple of 3, a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2+8)/24, otherwise a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2)/24. - Frederic Solbes, Mar 18 2014
G.f.: -(x^6+3*x^4+4*x^3+3*x^2+1)/((x^2+x+1)*(x+1)^2*(x-1)^5). - Colin Barker, Mar 27 2014
From Daniel Mondot, Sep 20 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 12, n>=8.
a(n) = 4*a(n-6) - 6*a(n-12) + 4*a(n-18) - a(n-24) + 1296, n>=24. (End)
MATHEMATICA
a[n_] := Switch[Mod[n, 6], 0, n+1, 1|5, 3n/4 + 7/24, 2|4, n+2/3, 3, 3n/4 + 5/8] + n^4/24 + n^3/4 + 2n^2/3; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 06 2016, after Frederic Solbes' formula *)
PROG
(PARI) a(n) = if (n % 3, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2)/24, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2+8)/24); \\ Michel Marcus, Mar 18 2014
CROSSREFS
Column k=3 of A277239.
Sequence in context: A327728 A372485 A000158 * A286269 A126877 A107769
KEYWORD
nonn
AUTHOR
Anthony C Robin, Jan 17 2005
EXTENSIONS
Extended by Ray Chandler, Dec 17 2008
Edited by Ray Chandler, Dec 19 2008
a(0) = 1 prepended by Daniel Mondot, Sep 20 2016
STATUS
approved