login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327728
Number of unlabeled multigraphs with loops allowed and n edges covering three vertices.
2
0, 2, 8, 19, 40, 77, 132, 217, 340, 510, 742, 1054, 1456, 1976, 2634, 3453, 4464, 5703, 7194, 8987, 11120, 13636, 16588, 20036, 24024, 28630, 33916, 39951, 46816, 54601, 63376, 73253, 84324, 96690, 110466, 125778, 142728, 161468, 182126, 204841, 229768, 257075, 286902, 319447, 354880, 393384
OFFSET
1,2
LINKS
FORMULA
a(n) = A050531(n) - A002620(n+2).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n > 12.
G.f.: x^2*(2 + 4*x + x^2 - 2*x^3 + x^6)/((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2).
EXAMPLE
a(2) = 2 since three vertices may be covered with two edges in 2 ways: the path graph P(3) or an edge plus a loop.
PROG
(PARI) concat([0], Vec((2 + 4*x + x^2 - 2*x^3 + x^6)/((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x^40)))
CROSSREFS
Column k=3 of A327615.
Sequence in context: A193389 A030504 A240279 * A372485 A000158 A101427
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Oct 23 2019
STATUS
approved