login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050531 Number of multigraphs with loops on 3 nodes with n edges. 9
1, 2, 6, 14, 28, 52, 93, 152, 242, 370, 546, 784, 1103, 1512, 2040, 2706, 3534, 4554, 5803, 7304, 9108, 11252, 13780, 16744, 20205, 24206, 28826, 34126, 40176, 47056, 54857, 63648, 73542, 84630, 97014, 110808, 126139, 143108, 161868, 182546, 205282 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is also the number of multigraphs (no loops allowed) on 3 nodes with n edges of two colors. - Geoffrey Critzer, Aug 10 2015

LINKS

Robert Israel, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-3,0,6,0,-3,-2,1,2,-1).

FORMULA

G.f.: (x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2).

a(n) = ceiling((-1)^n*A076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5). - Robert Israel, Aug 07 2015

a(n) = (A+B+C)/6 where A = binomial(n+5,5); B = (n+2)*(n+3)*(n+4)/8 if n even, B = (n+1)*(n+3)*(n+5)/8 if n odd; C = 2*((n/3) + 1) if n divisible by 3, C = 0 if n not divisible by 3. - David Pasino, Jul 06 2019

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>11. - Colin Barker, Jul 07 2019

MAPLE

a076118:= gfun:-rectoproc({a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n), a(0)=0, a(1)=1, a(2)=1, a(3)=-1}, a(n), remember):

f:= n -> ceil((-1)^n*a076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5):

map(f, [$0..100]); # Robert Israel, Aug 07 2015

MATHEMATICA

<<Combinatorica`

nn=30; n=3; CoefficientList[Series[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n - 1)/2 + 1, n*(n + 1)/2]], 2], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)

CoefficientList[Series[(x^6 + x^4 + 2 x^3 + x^2 + 1)/((x^3 - 1)^2 (x^2 - 1)^2 (x - 1)^2), {x, 0, 45}], x] (* Vincenzo Librandi, Aug 08 2015 *)

PROG

(PARI) Vec((x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2) + O(x^40)) \\ Colin Barker, Jul 07 2019

CROSSREFS

Column k=3 of A290428.

Cf. A076118, A002620, A290428.

Sequence in context: A256058 A294867 A033547 * A290699 A027083 A249665

Adjacent sequences:  A050528 A050529 A050530 * A050532 A050533 A050534

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Dec 29 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 12:17 EDT 2020. Contains 337178 sequences. (Running on oeis4.)