login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033547
Otto Haxel's guess for magic numbers of nuclear shells.
16
0, 2, 6, 14, 28, 50, 82, 126, 184, 258, 350, 462, 596, 754, 938, 1150, 1392, 1666, 1974, 2318, 2700, 3122, 3586, 4094, 4648, 5250, 5902, 6606, 7364, 8178, 9050, 9982, 10976, 12034, 13158, 14350, 15612, 16946, 18354, 19838, 21400, 23042, 24766, 26574, 28468
OFFSET
0,2
COMMENTS
O. Haxel gave a construction procedure. The formulas are due to Wolfdieter Lang.
LINKS
O. Haxel, Die Entstehung des Schalenmodells der Atomkerne, Physikalische Blätter, vol. 50, p. 339, 1994.
O. Haxel et al., On the "Magic Numbers" in Nuclear Structure, Phys. Rev., 75 (1949), 1766.
V. Ladma, Magic Numbers
FORMULA
a(n) = n*(n^2 + 5)/3.
G.f.: 2*x*(1 - x + x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 05 2015
E.g.f.: x*(6 + 3*x + x^2)*exp(x)/3. - G. C. Greubel, Oct 12 2019
a(n) = A046127(n+1) - 2. - Jianing Song, Feb 03 2024
MAPLE
A033547:=n->n*(n^2+5)/3: seq(A033547(n), n=0..50); # Wesley Ivan Hurt, Apr 05 2015
MATHEMATICA
Table[n(n^2+5)/3, {n, 0, 50}] (* Harvey P. Dale, Apr 07 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 2, 6, 14}, 50] (* Vincenzo Librandi, Apr 06 2015 *)
PROG
(Magma) [n*(n^2+5)/3 : n in [0..50]]; // Wesley Ivan Hurt, Apr 05 2015
(PARI) a(n)=n*(n^2+5)/3 \\ Charles R Greathouse IV, Jun 25 2017
(Sage) [n*(n^2+5)/3 for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n-> n*(n^2+5)/3); # G. C. Greubel, Oct 12 2019
CROSSREFS
Equals 2*A004006, partial sums of A014206, 2*(partial sums of A000124).
Sequence in context: A161212 A256058 A294867 * A050531 A290699 A027083
KEYWORD
easy,nonn,nice
STATUS
approved