login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050533
Thickened pyramidal numbers: a(n) = 2*(n+1)*n + Sum_{i=1..n} (4*i*(i-1) + 1).
3
0, 5, 22, 59, 124, 225, 370, 567, 824, 1149, 1550, 2035, 2612, 3289, 4074, 4975, 6000, 7157, 8454, 9899, 11500, 13265, 15202, 17319, 19624, 22125, 24830, 27747, 30884, 34249, 37850, 41695, 45792, 50149, 54774, 59675, 64860, 70337, 76114, 82199
OFFSET
0,2
COMMENTS
This sequence is the partial sums of A053755. - J. M. Bergot, May 31 2012
FORMULA
a(n) = (1/3)*n*(5 + 6*n + 4*n^2) = binomial(2*n+1, 3) + 2*(n+1)*n = A000447(n) + 4*A000217(n).
G.f.: x*(5+2*x+x^2)/(1-x)^4. - Colin Barker, Apr 16 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012
MATHEMATICA
CoefficientList[Series[x*(5+2*x+x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 27 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 22, 59}, 40] (* Harvey P. Dale, May 08 2012 *)
PROG
(PARI) a(n)=n*(4*n^2+6*n+5)/3 \\ Charles R Greathouse IV, Apr 16 2012
(Magma) I:=[0, 5, 22, 59]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 27 2012
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999
STATUS
approved