OFFSET
0,2
COMMENTS
This sequence is the partial sums of A053755. - J. M. Bergot, May 31 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(5+2*x+x^2)/(1-x)^4. - Colin Barker, Apr 16 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012
MATHEMATICA
CoefficientList[Series[x*(5+2*x+x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 27 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 22, 59}, 40] (* Harvey P. Dale, May 08 2012 *)
PROG
(PARI) a(n)=n*(4*n^2+6*n+5)/3 \\ Charles R Greathouse IV, Apr 16 2012
(Magma) I:=[0, 5, 22, 59]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 27 2012
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999
STATUS
approved