login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245301
a(n) = n*(7*n^2 + 15*n + 8)/6.
5
0, 5, 22, 58, 120, 215, 350, 532, 768, 1065, 1430, 1870, 2392, 3003, 3710, 4520, 5440, 6477, 7638, 8930, 10360, 11935, 13662, 15548, 17600, 19825, 22230, 24822, 27608, 30595, 33790, 37200, 40832, 44693, 48790, 53130, 57720, 62567, 67678, 73060, 78720, 84665
OFFSET
0,2
COMMENTS
Row sums of the triangle in A245300.
FORMULA
a(n) = n*(n+1)*(7*n+8)/6 = A002378(n)*A016993(n+1)/6.
a(n) = Sum_{j=0..n} A000217(2n-j)+j. - Manfred Arens, Dec 26 2015
G.f.: x*(5 + 2*x)/(1-x)^4. - Vincenzo Librandi, Feb 01 2016
E.g.f.: x*(30 + 36*x + 7*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021
MAPLE
A245301:= n-> n*(n+1)*(7*n+8)/6; seq(A245301(n), n=0..50); # G. C. Greubel, Mar 31 2021
MATHEMATICA
Table[n (7 n^2 + 15 n + 8)/6, {n, 0, 50}] (* Vincenzo Librandi, Feb 01 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 22, 58}, 50] (* Harvey P. Dale, Sep 21 2019 *)
PROG
(Haskell)
a245301 n = n * (n * (7 * n + 15) + 8) `div` 6
(PARI) a(n)=n*(7*n^2+15*n+8)/6 \\ Charles R Greathouse IV, Feb 01 2016
(Magma) [n*(7*n^2+15*n+8)/6: n in [0..60]]; // Vincenzo Librandi, Feb 01 2016
(Sage) [n*(n+1)*(7*n+8)/6 for n in (0..50)] # G. C. Greubel, Mar 31 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 17 2014
STATUS
approved