login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301499 Total sum of the hook lengths over all partitions of 2n-1 having exactly n parts. 2
1, 5, 22, 56, 139, 269, 554, 956, 1724, 2830, 4686, 7286, 11539, 17261, 26076, 38130, 55753, 79385, 113350, 158152, 220883, 303346, 415752, 562264, 759601, 1013728, 1350404, 1782342, 2346390, 3064045, 3992698, 5165042, 6666529, 8552739, 10944782, 13932362 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..12000 (terms 1..5000 from Alois P. Heinz)
FORMULA
a(n) = A180681(2*n-1,n).
a(n) ~ exp(Pi*sqrt(2*n/3)) * n / (8*sqrt(3)). - Vaclav Kotesovec, May 27 2018
MAPLE
f:= n-> (n-1)*n/2:
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n+f(n)],
b(n, i-1)+(p-> p+[0, p[1]*(n+f(i))])(b(n-i, min(n-i, i))))
end:
a:= n-> (p-> p[1]*(2*n-1+f(n))+p[2])(b(n-1$2)):
seq(a(n), n=1..45);
MATHEMATICA
f[n_] := n(n-1)/2;
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n + f[n]}, b[n, i - 1] + Function[p, p + {0, p[[1]] (n + f[i])}][b[n - i, Min[n - i, i]]]];
a[n_] := Function[p, p[[1]] (2n - 1 + f[n]) + p[[2]]][b[n - 1, n - 1]];
Array[a, 45] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A180681.
Sequence in context: A272824 A273677 A209116 * A033445 A208946 A245301
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 22 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 23:30 EST 2023. Contains 367662 sequences. (Running on oeis4.)