login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245303
Product of a prime and a power (exponent at least 2, base at least 1).
4
2, 3, 5, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131
OFFSET
1,1
COMMENTS
Numbers of the form p*m^r where p prime, m > 0 and r > 1.
LINKS
EXAMPLE
72 is in this sequence because 72 = 2*36 = A000040(1)*A001597(9).
108 is in this sequence because 108 = 3*36 = A000040(2)*A001597(9).
MAPLE
filter:= proc(n) local E, ne, i, j;
if isprime(n) then return true fi;
E:= map(t->t[2], ifactors(n)[2]);
ne:= nops(E);
for j from 1 to ne do
if igcd(seq(`if`(i=j, E[i]-1, E[i]), i=1..ne)) > 1 then return true fi;
od;
false
end proc:
filter(1):= false:
select(filter, [$1..1000]); # Robert Israel, Aug 11 2014
PROG
(PARI) ispp(n) = (n==1) || ispower(n);
isok(n) = {my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; if (ispp(n/p), return(1)); ); return (0); } \\ Michel Marcus, Aug 08 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved