login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of a prime and a power (exponent at least 2, base at least 1).
4

%I #33 Aug 13 2014 22:17:16

%S 2,3,5,7,8,11,12,13,16,17,18,19,20,23,24,27,28,29,31,32,37,40,41,43,

%T 44,45,47,48,50,52,53,54,56,59,61,63,64,67,68,71,72,73,75,76,79,80,81,

%U 83,88,89,92,96,97,98,99,101,103,104,107,108,109,112,113,116,117,124,125,127,128,131

%N Product of a prime and a power (exponent at least 2, base at least 1).

%C Numbers of the form p*m^r where p prime, m > 0 and r > 1.

%H Jens Kruse Andersen, <a href="/A245303/b245303.txt">Table of n, a(n) for n = 1..10000</a>

%e 72 is in this sequence because 72 = 2*36 = A000040(1)*A001597(9).

%e 108 is in this sequence because 108 = 3*36 = A000040(2)*A001597(9).

%p filter:= proc(n) local E,ne,i,j;

%p if isprime(n) then return true fi;

%p E:= map(t->t[2],ifactors(n)[2]);

%p ne:= nops(E);

%p for j from 1 to ne do

%p if igcd(seq(`if`(i=j,E[i]-1,E[i]),i=1..ne)) > 1 then return true fi;

%p od;

%p false

%p end proc:

%p filter(1):= false:

%p select(filter, [$1..1000]); # _Robert Israel_, Aug 11 2014

%o (PARI) ispp(n) = (n==1) || ispower(n);

%o isok(n) = {my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; if (ispp(n/p), return(1));); return (0);} \\ _Michel Marcus_, Aug 08 2014

%Y Cf. A000040, A001597, A245661.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Jul 17 2014