Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 17 2022 09:56:04
%S 0,5,22,59,124,225,370,567,824,1149,1550,2035,2612,3289,4074,4975,
%T 6000,7157,8454,9899,11500,13265,15202,17319,19624,22125,24830,27747,
%U 30884,34249,37850,41695,45792,50149,54774,59675,64860,70337,76114,82199
%N Thickened pyramidal numbers: a(n) = 2*(n+1)*n + Sum_{i=1..n} (4*i*(i-1) + 1).
%C This sequence is the partial sums of A053755. - _J. M. Bergot_, May 31 2012
%H Vincenzo Librandi, <a href="/A050533/b050533.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = (1/3)*n*(5 + 6*n + 4*n^2) = binomial(2*n+1, 3) + 2*(n+1)*n = A000447(n) + 4*A000217(n).
%F G.f.: x*(5+2*x+x^2)/(1-x)^4. - _Colin Barker_, Apr 16 2012
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Vincenzo Librandi_, Apr 27 2012
%t CoefficientList[Series[x*(5+2*x+x^2)/(1-x)^4,{x,0,40}],x] (* _Vincenzo Librandi_, Apr 27 2012 *)
%t LinearRecurrence[{4,-6,4,-1},{0,5,22,59},40] (* _Harvey P. Dale_, May 08 2012 *)
%o (PARI) a(n)=n*(4*n^2+6*n+5)/3 \\ _Charles R Greathouse IV_, Apr 16 2012
%o (Magma) I:=[0, 5, 22, 59]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Apr 27 2012
%Y Cf. A000292, A000447, A000217, A050492.
%K nonn,easy,nice
%O 0,2
%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999