The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006520 Partial sums of A006519. (Formerly M2344) 7
 1, 3, 4, 8, 9, 11, 12, 20, 21, 23, 24, 28, 29, 31, 32, 48, 49, 51, 52, 56, 57, 59, 60, 68, 69, 71, 72, 76, 77, 79, 80, 112, 113, 115, 116, 120, 121, 123, 124, 132, 133, 135, 136, 140, 141, 143, 144, 160, 161, 163, 164, 168, 169, 171, 172, 180, 181, 183, 184, 188, 189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The subsequence of primes in this partial sum begins: 3, 11, 23, 29, 31, 59, 71, 79, 113, 163, 181. The subsequence of powers in this partial sum begins: 1, 4, 8, 9, 32, 49, 121, 144, 169. - Jonathan Vos Post, Feb 18 2010 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1001 [Jul 23 2013; offset adapted by Georg Fischer, Jan 27 2020] Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 44. Victor Meally, Letter to N. J. A. Sloane, May 1975. Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple ordinary generating functions. Ralf Stephan, Table of generating functions. FORMULA a(n)/(n*log(n)) is bounded. - Benoit Cloitre, Dec 17 2002 G.f.: (1/(x*(1-x))) * (x/(1-x) + Sum_{k>=1} 2^(k-1)*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003 a(n) = b(n+1), with b(2n) = 2b(n) + n, b(2n+1) = 2b(n) + n + 1. - Ralf Stephan, Sep 07 2003 a(2^k-1) = k*2^(k-1) = A001787(k) for any k > 0. - Rémy Sigrist, Jan 21 2021 a(n) ~ (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022 MATHEMATICA Table[ 2^IntegerExponent[n, 2], {n, 1, 70}] // Accumulate (* Jean-François Alcover, May 14 2013 *) PROG (PARI) a(n)=sum(i=1, n, 2^valuation(i, 2)) (Python) def A006520(n): return sum(i&-i for i in range(1, n+1)) # Chai Wah Wu, Jul 14 2022 CROSSREFS First differences of A022560. Cf. A001620, A001787, A006519. Sequence in context: A047460 A193532 A068056 * A054204 A050003 A002156 Adjacent sequences: A006517 A006518 A006519 * A006521 A006522 A006523 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Simon Plouffe EXTENSIONS More terms from Benoit Cloitre, Dec 17 2002 Offset changed to 1 by N. J. A. Sloane, Oct 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 12:23 EDT 2023. Contains 363157 sequences. (Running on oeis4.)