|
|
A006520
|
|
Partial sums of A006519.
(Formerly M2344)
|
|
7
|
|
|
1, 3, 4, 8, 9, 11, 12, 20, 21, 23, 24, 28, 29, 31, 32, 48, 49, 51, 52, 56, 57, 59, 60, 68, 69, 71, 72, 76, 77, 79, 80, 112, 113, 115, 116, 120, 121, 123, 124, 132, 133, 135, 136, 140, 141, 143, 144, 160, 161, 163, 164, 168, 169, 171, 172, 180, 181, 183, 184, 188, 189
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The subsequence of primes in this partial sum begins: 3, 11, 23, 29, 31, 59, 71, 79, 113, 163, 181. The subsequence of powers in this partial sum begins: 1, 4, 8, 9, 32, 49, 121, 144, 169. - Jonathan Vos Post, Feb 18 2010
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1/(x*(1-x))) * (x/(1-x) + Sum_{k>=1} 2^(k-1)*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003
a(n) = b(n+1), with b(2n) = 2b(n) + n, b(2n+1) = 2b(n) + n + 1. - Ralf Stephan, Sep 07 2003
a(n) ~ (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) a(n)=sum(i=1, n, 2^valuation(i, 2))
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|