OFFSET
0,3
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = Sum_{j=1..n} 4^(v_2(j)), where v_2(j) is the exponent of highest power of 2 dividing j. - Ridouane Oudra, Jun 08 2019
a(n) = n + 3*Sum_{j=1..floor(log_2(n))} 4^(j-1)*floor(n/2^j), for n>=1. - Ridouane Oudra, Dec 09 2020
From Kevin Ryde, Dec 17 2021: (Start)
a(2*n+b) = 4*a(n) + n + b where b = 0 or 1.
a(n) = (A001196(n) - n)/2.
(End)
EXAMPLE
a(2) = (0 xor 2) + (1 xor 2) = 2 + 3 = 5.
MAPLE
read("transforms"):
A051933 := proc(n, k)
XORnos(n, k) ;
end proc:
A224915 := proc(n)
add(A051933(n, k), k=0..n) ;
end proc: # R. J. Mathar, Apr 26 2013
# second Maple program:
with(MmaTranslator[Mma]):
seq(add(BitXor(n, i), i=0..n), n=0..60); # Ridouane Oudra, Dec 09 2020
MATHEMATICA
Array[Sum[BitXor[#, k], {k, 0, #}] &, 53, 0] (* Michael De Vlieger, Dec 09 2020 *)
PROG
(Python)
for n in range(59):
s = 0
for k in range(n): s += n ^ k
print(s, end=', ')
(Python)
def A224915(n): return 3*int(bin(n)[2:], 4)-n>>1 # Chai Wah Wu, Aug 21 2023
(PARI) a(n) = sum(k=0, n, bitxor(n, k)); \\ Michel Marcus, Jun 08 2019
(PARI) a(n) = (3*fromdigits(binary(n), 4) - n) >>1; \\ Kevin Ryde, Dec 17 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Apr 19 2013
STATUS
approved