login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135301
a(1)=1, a(n)=a(n-1)+n^0 if n odd, a(n)=a(n-1)+ n^2 if n is even.
2
1, 5, 6, 22, 23, 59, 60, 124, 125, 225, 226, 370, 371, 567, 568, 824, 825, 1149, 1150, 1550, 1551, 2035, 2036, 2612, 2613, 3289, 3290, 4074, 4075, 4975, 4976, 6000, 6001, 7157, 7158, 8454, 8455, 9899, 9900, 11500, 11501, 13265, 13266, 15202, 15203
OFFSET
1,2
FORMULA
O.g.f.: x*(x^4+4*x^3-2*x^2+4*x+1)/((-1+x)^4*(1+x)^3) . a(2n-1) = 4*n^3/3-2*n^2+5*n/3, a(2n) = 4*n^3/3+2*n^2+5*n/3. - R. J. Mathar, May 17 2008
a(1)=1, a(2)=5, a(3)=6, a(4)=22, a(5)=23, a(6)=59, a(7)=60, a(n)=a(n-1)+ 3*a(n-2)- 3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a (n-7). - Harvey P. Dale, Jul 16 2014
a(n) = ( (2*n+1)*(n^2+n+3)+3*(n^2+n-1)*(-1)^n )/12. - Luce ETIENNE, Jul 26 2014
MATHEMATICA
a = {}; r = 0; s = 2; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (*Artur Jasinski*)
nxt[{n_, a_}]:={n+1, If[EvenQ[n], a+1, a+(n+1)^2]}; Transpose[NestList[nxt, {1, 1}, 50]][[2]] (* or *) LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 5, 6, 22, 23, 59, 60}, 50] (* Harvey P. Dale, Jul 16 2014 *)
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, May 12 2008
STATUS
approved