|
|
A135302
|
|
Square array of numbers A(n,k) (n>=0, k>=0) of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= k for all x, read by antidiagonals.
|
|
20
|
|
|
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 0, 1, 13, 4, 1, 1, 0, 1, 62, 26, 4, 1, 1, 0, 1, 311, 168, 26, 4, 1, 1, 0, 1, 1822, 1416, 243, 26, 4, 1, 1, 0, 1, 11593, 13897, 2451, 243, 26, 4, 1, 1, 0, 1, 80964, 153126, 29922, 2992, 243, 26, 4, 1, 1, 0, 1, 608833, 1893180, 420841, 41223, 2992, 243, 26, 4, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,13
|
|
COMMENTS
|
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
|
|
REFERENCES
|
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
|
|
LINKS
|
Alois P. Heinz, Antidiagonals n = 0..140, flattened
|
|
FORMULA
|
E.g.f. of column k=0: t_0(x) = 1; e.g.f. of column k>0: t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)).
A(n,k) = Sum_{i=0..k} A135313(n,i).
|
|
EXAMPLE
|
Table A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 4, 4, 4, 4, ...
0, 1, 13, 26, 26, 26, ...
0, 1, 62, 168, 243, 243, ...
0, 1, 311, 1416, 2451, 2992, ...
|
|
MAPLE
|
t:= proc(k) option remember; `if`(k<0, 0,
unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
A:= proc(n, k) option remember;
coeff(series(t(k)(x), x, n+1), x, n) *n!
end:
seq(seq(A(d-i, i), i=0..d), d=0..15);
|
|
MATHEMATICA
|
t[0, _] = 1; t[k_, x_] := t[k, x] = Exp[Sum[x^m/m!*t[k-m, x], {m, 1, k}]]; a[0, 0] = 1; a[_, 0] = 0; a[n_, k_] := SeriesCoefficient[t[k, x], {x, 0, n}]*n!; Table[a[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2013, after Maple *)
|
|
CROSSREFS
|
Columns k=0-10 give: A000007, A000012, A135312, A210911, A210912, A210913, A210914, A210915, A210916, A210917, A210918.
Main diagonal gives A052880.
A(n,n)-A(n,n-1) gives A000670.
Cf. A135313.
Sequence in context: A085639 A158972 A278987 * A128760 A057884 A329637
Adjacent sequences: A135299 A135300 A135301 * A135303 A135304 A135305
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Alois P. Heinz, Dec 04 2007
|
|
STATUS
|
approved
|
|
|
|