OFFSET
0,13
COMMENTS
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
REFERENCES
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
E.g.f. of column k=0: t_0(x) = 1; e.g.f. of column k>0: t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)).
A(n,k) = Sum_{i=0..k} A135313(n,i).
EXAMPLE
Table A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 4, 4, 4, 4, ...
0, 1, 13, 26, 26, 26, ...
0, 1, 62, 168, 243, 243, ...
0, 1, 311, 1416, 2451, 2992, ...
MAPLE
t:= proc(k) option remember; `if`(k<0, 0,
unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
A:= proc(n, k) option remember;
coeff(series(t(k)(x), x, n+1), x, n) *n!
end:
seq(seq(A(d-i, i), i=0..d), d=0..15);
MATHEMATICA
t[0, _] = 1; t[k_, x_] := t[k, x] = Exp[Sum[x^m/m!*t[k-m, x], {m, 1, k}]]; a[0, 0] = 1; a[_, 0] = 0; a[n_, k_] := SeriesCoefficient[t[k, x], {x, 0, n}]*n!; Table[a[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2013, after Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 04 2007
STATUS
approved