login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210911
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 3 for all x.
4
1, 1, 4, 26, 168, 1416, 13897, 153126, 1893180, 25796852, 383636151, 6177688914, 106969864696, 1980478817526, 39015578535585, 814416108606566, 17947777613632128, 416233580676722424, 10129555365300697267, 258028441032419619786, 6864011282184757297896
OFFSET
0,3
COMMENTS
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
REFERENCES
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
LINKS
FORMULA
E.g.f.: exp(x*exp(x*exp(x)+x^2/2)+x^2/2*exp(x)+x^3/6).
MAPLE
gf:= exp(x*exp(x*exp(x)+x^2/2)+x^2/2*exp(x)+x^3/6):
a:= n-> n!* coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
MATHEMATICA
t[0, _] = 1; t[k_, x_] := t[k, x] = Exp[Sum[x^m/m!*t[k-m, x], {m, 1, k}]]; a[0, 0] = 1; a[_, 0] = 0; a[n_, k_] := SeriesCoefficient[t[k, x], {x, 0, n}]*n!; Table[a[n, 3], {n, 0, 30} ] (* Jean-François Alcover, Feb 04 2014, after A135302 and Alois P. Heinz *)
CROSSREFS
Column k=3 of A135302.
Sequence in context: A302335 A244787 A220305 * A278416 A108082 A199490
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 29 2012
STATUS
approved