Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 05 2016 10:37:45
%S 1,1,4,26,168,1416,13897,153126,1893180,25796852,383636151,6177688914,
%T 106969864696,1980478817526,39015578535585,814416108606566,
%U 17947777613632128,416233580676722424,10129555365300697267,258028441032419619786,6864011282184757297896
%N Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 3 for all x.
%C R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
%D A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
%H Alois P. Heinz, <a href="/A210911/b210911.txt">Table of n, a(n) for n = 0..448</a>
%F E.g.f.: exp(x*exp(x*exp(x)+x^2/2)+x^2/2*exp(x)+x^3/6).
%p gf:= exp(x*exp(x*exp(x)+x^2/2)+x^2/2*exp(x)+x^3/6):
%p a:= n-> n!* coeff(series(gf,x,n+1), x, n):
%p seq(a(n), n=0..30);
%t t[0, _] = 1; t[k_, x_] := t[k, x] = Exp[Sum[x^m/m!*t[k-m, x], {m, 1, k}]]; a[0, 0] = 1; a[_, 0] = 0; a[n_, k_] := SeriesCoefficient[t[k, x], {x, 0, n}]*n!; Table[a[n, 3], {n, 0, 30} ] (* _Jean-François Alcover_, Feb 04 2014, after A135302 and _Alois P. Heinz_ *)
%Y Column k=3 of A135302.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Mar 29 2012