login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210915
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 7 for all x.
4
1, 1, 4, 26, 243, 2992, 45906, 845287, 17637091, 412976516, 10702355041, 304058582059, 9396887340381, 313853270626962, 11265355519125229, 432420217726582213, 17674492093095982705, 766343475354260380416, 35129831766609666284023, 1697466558811335003294745
OFFSET
0,3
COMMENTS
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
REFERENCES
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
LINKS
FORMULA
E.g.f.: t_7(x), where t_k(x) = exp (Sum_{m=1..k} x^m/m! * t_{k-m}(x)) for k>=0 and t_k(x) = 0 otherwise.
MAPLE
t:= proc(k) option remember;
`if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
gf:= t(7)(x):
a:= n-> n!* coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
MATHEMATICA
t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]]; gf = t[7][x]; a[n_] := n!*SeriesCoefficient[gf, {x, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2014, translated from Maple *)
CROSSREFS
Column k=7 of A135302.
Sequence in context: A210912 A210913 A210914 * A210916 A210917 A210918
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 29 2012
STATUS
approved