login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136047
a(1)=1, a(n)=a(n-1)+n if n even, a(n)=a(n-1)+n^2 if n is odd.
31
1, 3, 12, 16, 41, 47, 96, 104, 185, 195, 316, 328, 497, 511, 736, 752, 1041, 1059, 1420, 1440, 1881, 1903, 2432, 2456, 3081, 3107, 3836, 3864, 4705, 4735, 5696, 5728, 6817, 6851, 8076, 8112, 9481, 9519, 11040, 11080, 12761, 12803, 14652, 14696, 16721
OFFSET
1,2
COMMENTS
The only prime terms are 3, 41, 47.
The semiprime terms are A136048.
Cf. A001082/A135370: f(1) = 1, then if n even/odd f(n) = n+f(n-1), if n odd/even f(n) = 2*n+f(n-1).
FORMULA
a(n) = (1/12)(1 + n)(2n^2+7n-3) if n is odd, a(n)=(1/12)n(2n^2+3n+4) if n is even.
a(n) = (-3 + 3*(-1)^n + 8*n + 12*n^2 - 6*(-1)^n*n^2 + 4*n^3)/24.
a(1)=1 then a(n) = a(n-1)+n^(if n is even then 1 else 2),
or a(n) = a(n-1)+n^(1+mod(n,2)),
or a(n) = a(n-1)+n^((3-(-1)^n)/2).
From R. J. Mathar, Feb 22 2009: (Start)
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7).
G.f.: x*(1+2*x+6*x^2-2*x^3+x^4)/((1+x)^3*(x-1)^4). (End)
MATHEMATICA
a[1]=1; a[n_]:=a[n]=a[n-1]+n^(1+Mod[n, 2]); Table[a[n], {n, 100}]
nxt[{n_, a_}]:={n+1, If[OddQ[n], a+n+1, a+(n+1)^2]}; Transpose[NestList[nxt, {1, 1}, 50]][[2]] (* Harvey P. Dale, Oct 11 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Dec 12 2007
EXTENSIONS
Edited by Michel Marcus, Mar 02 2022
STATUS
approved