OFFSET
0,2
FORMULA
G.f.: ((41472*x^3 - 11520*x^2 + 288*x)*g'' + (-23040*x + 432 + 103680*x^2)*g' + (20736*x-864)*g)/1728 where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
a(n) = hypergeom([1/2,-n,-n],[1,2],4)*binomial(2*n,n). - Mark van Hoeij, May 13 2013
D-finite with recurrence n*(n+1)^2*a(n) +4*(-13*n^3+10*n^2+2*n-3)*a(n-1) +12*(2*n-3)*(26*n^2-61*n+39)*a(n-2) -432*(2*n-5)*(n-2)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
MAPLE
sq := (1-40*x+144*x^2)^(1/2); pb := 54*x*(108*x^2-27*x+1+(9*x-1)*sq);
H1 := hypergeom([7/6, 1/3], [1], pb); H2 := hypergeom([1/6, 4/3], [1], pb);
fa := (10-72*x-6*sq)^(1/2)/(216*x);
ogf := fa*((648*x^2+90*x+1+(54*x+3)*sq)*H1^2 - (612*x-7+3*sq)*H1*H2 + 8*(72*x-1)*H2^2); series(ogf, x=0, 20); # Mark van Hoeij, Nov 12 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 25 2008
STATUS
approved