login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136042 Base-2 MR-expansion of 1/29. 9
5, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 3, 2, 1, 5, 4, 1, 2, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The base-m MR-expansion of a positive real number x, denoted by MR(x,m), is the integer sequence {s(1),s(2),s(3),...}, where s(i) is the smallest exponent d such that (m^d)x(i)>1 and where x(i+1)=(2^d)x(i)-1, with the initialization x(1)=x. The base-2 MR-expansion of 1/29 is periodic with period length 14. Further computational results (see A136043) suggest that if p is a prime with 2 as a primitive root, then the base-2 MR-expansion of 1/p is periodic with period (p-1)/2. This has been confirmed for primes up to 2000. The base-2 MR-expansion of e-2.71828... is given in A136044.

LINKS

Table of n, a(n) for n=1..105.

FORMULA

a(n)=(1/182)*{-48*(n mod 14)+17*[(n+1) mod 14]+17*[(n+2) mod 14]-22*[(n+3) mod 14]+4*[(n+4) mod 14]+17*[(n+5) mod 14]-9*[(n+6) mod 14]+4*[(n+7) mod 14]+4*[(n+8) mod 14]+30*[(n+9) mod 14]-9*[(n+10) mod 14]-9*[(n+11) mod 14]+43*[(n+12) mod 14]+17*[(n+13) mod 14]} - Paolo P. Lava, Jan 21 2008

EXAMPLE

The MR-expansion of 1/5 using m=2 is {3,1,3,1,3,1,3,1,...}, because 1/5->2/5->4/5->8/5->3/5->6/5->1/5->... indicating that MR(1/5,2) begins {3,1,...} and has period length 2.

CROSSREFS

Cf. A136043, A136044.

Sequence in context: A154739 A321044 A136564 * A268911 A166044 A190287

Adjacent sequences:  A136039 A136040 A136041 * A136043 A136044 A136045

KEYWORD

nonn

AUTHOR

John W. Layman, Dec 12 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 19:11 EDT 2019. Contains 324222 sequences. (Running on oeis4.)