login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321044
Irregular table related to f[(a*x+b)/(c*x+d)]=(c*x+d)^(2*n)*f[x], and f[x]=1/(x+1), f[x]=(a*x+b)/(c*x+d).
0
1, 1, 1, 1, 5, 4, 1, 1, 9, 16, 14, 6, 1, 1, 13, 36, 55, 50, 27, 8, 1, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1, 1, 25, 144, 506, 1210, 2079, 2640, 2508, 1782, 935, 352, 90, 14, 1, 1, 29, 196, 819, 2366, 5005, 8008, 9867, 9438, 7007
OFFSET
0,5
COMMENTS
The author writes: This derivation is an interesting Fibonacci modular form. The modular form function is: f[(a*x+b)/(c*x+d)] = (c*x+d)^(2*n)*f[x] and I have used f[x]=1/(x+1) and f[x]=(a*x+b)/(c*x+d) for Möbius function matrix: {{0,1},{1,1}}. The polynomial is solved as a zero based form.
The graph of the root structures of the polynomial are mostly on a circle with center at -1, see Mathematica.
FORMULA
For n > 0, the n-th row sum is 3*2^(2n-2) - 1. - Charles R Greathouse IV, Oct 30 2018
EXAMPLE
{{1},
{1, 1},
{1, 5, 4, 1},
{1, 9, 16, 14, 6, 1},
{1, 13, 36, 55, 50, 27, 8, 1},
{1, 17, 64, 140, 196, 182, 112, 44, 10, 1},
{1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1},
{1, 25, 144, 506, 1210, 2079, 2640, 2508, 1782, 935, 352, 90, 14, 1},
{1, 29, 196, 819, 2366, 5005, 8008, 9867, 9438, 7007, 4004, 1729, 546, 119, 16, 1},
{1, 33, 256, 1240, 4200, 10556, 20384, 30888,37180, 35750, 27456, 16744, 8008, 2940, 800, 152, 18, 1},
{1, 37, 324, 1785,6936, 20196, 45696, 82212, 119340, 140998, 136136, 107406, 68952, 35700, 14688, 4692, 1122, 189, 20, 1}}
MATHEMATICA
g[x_, n_] = If[n == 0, 1, (2 + x)*(1 + x)^(-1 + 2 n)/(1 + x) - 1]
Show[Table[ListPlot[{Re[x], Im[x]} /. NSolve[g[x, n] == 0, x], PlotStyle -> Red], {n, 1, 10}]]
a = Table[CoefficientList[g[x, n], x], {n, 0, 10}] (* Roger L. Bagula, Oct 26 2018 *)
row[n_] = If[n > 0, CoefficientList[(x+2)*(x+1)^(2n-2)-1, x], {1}]; (* Charles R Greathouse IV, Oct 30 2018 *)
PROG
(PARI) row(n)=if(n, Vec((x+2)*(x+1)^(2*n-2)-1), [1]) \\ Charles R Greathouse IV, Oct 30 2018
CROSSREFS
Sequence in context: A213658 A046575 A154739 * A136564 A136042 A268911
KEYWORD
nonn,tabf,obsc
AUTHOR
Roger L. Bagula, Oct 26 2018
STATUS
approved