login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213658
Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the graph G(n) consisting of an edge ab and n triangles, each having one vertex identified with the vertex b.
1
1, 5, 4, 1, 1, 5, 14, 14, 6, 1, 1, 7, 21, 43, 47, 27, 8, 1, 1, 9, 36, 84, 142, 158, 108, 44, 10, 1, 1, 11, 55, 165, 330, 494, 542, 410, 205, 65, 12, 1, 1, 13, 78, 286, 715, 1287, 1780, 1908, 1527, 875, 346, 90, 14, 1, 1, 15, 105, 455, 1365, 3003, 5005
OFFSET
1,2
COMMENTS
Row n contains 2n + 2 entries.
Sum of entries in row n = 3^n + 2^{2n+1} = A213659(n).
LINKS
S. Alikhani and E. Deutsch, Graphs with domination roots in the right half-plane, arXiv preprint arXiv:1305.3734 [math.CO], 2013-2014.
S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
FORMULA
Generating polynomial of row n is x^(n+1)*(2+x)^n + x*(1+x)^(2*n+1); this is the domination polynomial of the graph G(n).
T(n,k) = 2^(2*n+1-k)*binomial(n,k-n-1) + binomial(2*n+1,k-1) (n >= 1; 1 <= k <= 2*n+2).
EXAMPLE
Row 1 is 1,5,4,1 because the graph G(1) is abcd with edges ab, bc, bd, and cd; there is 1 dominating subset of size 1 ({b}); all binomial(4,2)=6 subsets of size 2 of {a,b,c,d} with the exception of {c,d} are dominating; all binomial(4,3)=4 subsets of size 3 of {a,b,c,d} are dominating; obviously, {a,b,c,d} is dominating.
Triangle starts:
1, 5, 4, 1;
1, 5, 14, 14, 6, 1;
1, 7, 21, 43, 47, 27, 8, 1;
MAPLE
T := proc (n, k) options operator, arrow: 2^(2*n+1-k)*binomial(n, k-n-1)+binomial(2*n+1, k-1) end proc: for n to 8 do seq(T(n, k), k = 1 .. 2*n+2) end do; # yields sequence in triangular form
MATHEMATICA
row[n_] := CoefficientList[x^(n + 1)*(2 + x)^n + x*(1 + x)^(2*n + 1), x] // Rest;
Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Dec 02 2017 *)
PROG
(Magma) /* As triangle */ [[2^(2*n+1-k)*Binomial(n, k-n-1) + Binomial(2*n+1, k-1): k in [1..2*n+2]]: n in [1.. 15]]; // Vincenzo Librandi, Jul 21 2019
CROSSREFS
Cf. A213659.
Sequence in context: A124602 A320060 A132707 * A046575 A154739 A321044
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 29 2012
STATUS
approved