login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213658 Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the graph G(n) consisting of an edge ab and n triangles, each having one vertex identified with the vertex b. 1
1, 5, 4, 1, 1, 5, 14, 14, 6, 1, 1, 7, 21, 43, 47, 27, 8, 1, 1, 9, 36, 84, 142, 158, 108, 44, 10, 1, 1, 11, 55, 165, 330, 494, 542, 410, 205, 65, 12, 1, 1, 13, 78, 286, 715, 1287, 1780, 1908, 1527, 875, 346, 90, 14, 1, 1, 15, 105, 455, 1365, 3003, 5005 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row n contains 2n + 2 entries.

Sum of entries in row n = 3^n + 2^{2n+1} = A213659(n).

LINKS

Table of n, a(n) for n=1..61.

S. Alikhani and E. Deutsch, Graphs with domination roots in the right half-plane, arXiv preprint arXiv:1305.3734, 2013

S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251.

T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926.

FORMULA

Generating polynomial of row n is x^(n+1)*(2+x)^n + x*(1+x)^(2*n+1); this is the domination polynomial of the graph G(n).

T(n,k) = 2^(2*n+1-k)*binom(n,k-n-1) + binom(2*n+1,k-1) (n>=1; 1<=k<=2*n+2).

EXAMPLE

Row 1 is 1,5,4,1 because the graph G(1) is abcd with edges ab, bc, bd, and cd; there is 1 dominating subset of size 1 ({b}),; all binom(4,2)=6 subsets of size 2 of {a,b,c,d} with the exception of {c,d} are dominating; all binom(4,3)=4 subsets of size 3 of {a,b,c,d} are dominating; obviously, {a,b,c,d} is dominating.

Triangle starts:

1,5,4,1;

1,5,14,14,6,1;

1,7,21,43,47,27,8,1;

MAPLE

T := proc (n, k) options operator, arrow: 2^(2*n+1-k)*binomial(n, k-n-1)+binomial(2*n+1, k-1) end proc: for n to 8 do seq(T(n, k), k = 1 .. 2*n+2) end do; # yields sequence in triangular form

CROSSREFS

A213659

Sequence in context: A115637 A124602 A132707 * A046575 A154739 A136564

Adjacent sequences:  A213655 A213656 A213657 * A213659 A213660 A213661

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Jun 29 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 21 02:07 EDT 2014. Contains 240824 sequences.