OFFSET
1,1
COMMENTS
Row n contain 2n + 1 entries.
Sum of entries in row n = 3^n + 4^n = A074605(n).
LINKS
S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
FORMULA
Generating polynomial of row n is x*(1+x)^(2*n) + (2*x+x^2)^n; this is the domination polynomial of the graph G(n).
T(n,k) = 2^(2*n-k)*binomial(n,k-n) + binomial(2*n,k-1) (n >= 1; 1 <= k <= 2*n+1).
EXAMPLE
Row 1 is 3,3,1 because the graph G(1) is the triangle abc; there are 3 dominating subsets of size 1 ({a}, {b}, {c}), 3 dominating subsets of size 2 ({a,b}, {a,c}, {b,c}), and 1 dominating subset of size 3 ({a,b,c}).
T(n,1)=1 for n >= 2 because the common vertex of the triangles is the only dominating subset of size k=1.
Triangle starts:
3, 3, 1;
1, 8, 10, 5, 1;
1, 6, 23, 32, 21, 7, 1;
1, 8, 28, 72, 102, 80, 36, 9, 1;
MAPLE
T := proc (n, k) options operator, arrow: 2^(2*n-k)*binomial(n, k-n)+binomial(2*n, k-1) end proc: for n to 9 do seq(T(n, k), k = 1 .. 2*n+1) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := 2^(2n-k) Binomial[n, k-n] + Binomial[2n, k-1];
Table[T[n, k], {n, 1, 9}, {k, 1, 2n+1}] // Flatten (* Jean-François Alcover, Dec 06 2017 *)
PROG
(Magma) /* As triangle */ [[2^(2*n-k)*Binomial(n, k-n)+Binomial(2*n, k-1): k in [1..2*n+1]]: n in [1.. 10]]; // Vincenzo Librandi, Jul 20 2019
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 29 2012
STATUS
approved