login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213660
Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the graph G(n) obtained by taking n copies of the cycle graph C_3 with a vertex in common.
0
3, 3, 1, 1, 8, 10, 5, 1, 1, 6, 23, 32, 21, 7, 1, 1, 8, 28, 72, 102, 80, 36, 9, 1, 1, 10, 45, 120, 242, 332, 290, 160, 55, 11, 1, 1, 12, 66, 220, 495, 856, 1116, 1032, 655, 280, 78, 13, 1, 1, 14, 91, 364, 1001, 2002, 3131, 3880, 3675, 2562, 1281, 448, 105, 15, 1
OFFSET
1,1
COMMENTS
Row n contain 2n + 1 entries.
Sum of entries in row n = 3^n + 4^n = A074605(n).
LINKS
S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
FORMULA
Generating polynomial of row n is x*(1+x)^(2*n) + (2*x+x^2)^n; this is the domination polynomial of the graph G(n).
T(n,k) = 2^(2*n-k)*binomial(n,k-n) + binomial(2*n,k-1) (n >= 1; 1 <= k <= 2*n+1).
EXAMPLE
Row 1 is 3,3,1 because the graph G(1) is the triangle abc; there are 3 dominating subsets of size 1 ({a}, {b}, {c}), 3 dominating subsets of size 2 ({a,b}, {a,c}, {b,c}), and 1 dominating subset of size 3 ({a,b,c}).
T(n,1)=1 for n >= 2 because the common vertex of the triangles is the only dominating subset of size k=1.
Triangle starts:
3, 3, 1;
1, 8, 10, 5, 1;
1, 6, 23, 32, 21, 7, 1;
1, 8, 28, 72, 102, 80, 36, 9, 1;
MAPLE
T := proc (n, k) options operator, arrow: 2^(2*n-k)*binomial(n, k-n)+binomial(2*n, k-1) end proc: for n to 9 do seq(T(n, k), k = 1 .. 2*n+1) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := 2^(2n-k) Binomial[n, k-n] + Binomial[2n, k-1];
Table[T[n, k], {n, 1, 9}, {k, 1, 2n+1}] // Flatten (* Jean-François Alcover, Dec 06 2017 *)
PROG
(Magma) /* As triangle */ [[2^(2*n-k)*Binomial(n, k-n)+Binomial(2*n, k-1): k in [1..2*n+1]]: n in [1.. 10]]; // Vincenzo Librandi, Jul 20 2019
CROSSREFS
Cf. A074605.
Sequence in context: A165795 A287290 A287981 * A099037 A340934 A271706
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 29 2012
STATUS
approved