OFFSET
0,8
COMMENTS
REFERENCES
P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
P. Feinsilver and R. Fitzgerald, The Spectrum of Symmetric Krawtchouk Matrices, Linear Algebra and Its Applications, Vol. 235 (1996), pp. 121-139.
FORMULA
Triangle T(n, k) = if(k<=n, C(n, k)*Sum_{i=0..n} (-1)^i*C(k, i)C(n-k, k-i), 0).
Triangle T(n, k) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,k)*C(k,j-k) = C(n,k)*A098593(n,k).
EXAMPLE
Triangle begins as:
1.
1, -1.
1, 0, 1.
1, 3, -3, 1.
1, 8, -12, 8, 1. ...
MATHEMATICA
T[n_, k_]:= If[k <= n, Binomial[n, k]*Sum[(-1)^j*Binomial[k, j]*Binomial[n - k, k - j], {j, 0, n}], 0]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
PROG
(PARI) {T(n, k) = binomial(n, k)*sum(j=0, n, (-1)^j*binomial(k, j)*binomial(n-k, k-j))};
for(n=0, 20, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 31 2017
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Sep 23 2004
STATUS
approved