login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099038
Diagonal sums of a Krawtchouk triangle.
2
1, 1, 0, 1, 5, 6, 3, 13, 42, 55, 55, 162, 413, 591, 810, 2001, 4451, 6900, 11091, 24795, 51030, 84337, 147253, 309666, 610695, 1058041, 1928646, 3903175, 7528741, 13480380, 25126093, 49640405, 94739568, 173440389, 326974495, 636424008
OFFSET
0,5
COMMENTS
Diagonal sums of A099037.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*Sum_{i=0..n} (-1)^i*C(k, i) * C(n-2k, k-i).
Conjecture: n*a(n) -n*a(n-1) +n*a(n-2) +3*(-n+1)*a(n-3) +(-5*n+13)*a(n-4) +(n-3)*a(n-5)=0. - R. J. Mathar, Dec 21 2014
MATHEMATICA
Table[Sum[Binomial[n - k, k]*Sum[(-1)^i*Binomial[k, i]*Binomial[n - 2*k, k - i], {i, 0, n}], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Dec 31 2017 *)
PROG
(PARI) for(n=0, 30, print1(sum(k=0, floor(n/2), binomial(n-k, k)*sum(i=0, n, (-1)^i*binomial(k, i)*binomial(n-2*k, k-i))), ", ")) \\ G. C. Greubel, Dec 31 2017
CROSSREFS
Cf. A077948.
Sequence in context: A328905 A195709 A257837 * A064206 A087197 A221216
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 23 2004
STATUS
approved