|
|
A099041
|
|
Number of 3 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (10;1).
|
|
0
|
|
|
1, 8, 24, 58, 128, 270, 556, 1130, 2280, 4582, 9188, 18402, 36832, 73694, 147420, 294874, 589784, 1179606, 2359252, 4718546, 9437136, 18874318, 37748684, 75497418, 150994888, 301989830, 603979716, 1207959490, 2415919040, 4831838142, 9663676348, 19327352762
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by g.f. 2xy/((1-2x)(1-(2-x)y/(1-x))).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 1 + 2*x*(2-x)^2/((1-2*x)*(1-x)^2).
a(n) = 9*2^n - 2*n - 8.
a(n) = 2 * (A054127(n+1) - 1) for n>0.
|
|
PROG
|
(PARI) vector(50, n, 9*2^n - 2*n - 8) \\ Michel Marcus, Dec 01 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|