login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099041 Number of 3 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (10;1). 0
1, 8, 24, 58, 128, 270, 556, 1130, 2280, 4582, 9188, 18402, 36832, 73694, 147420, 294874, 589784, 1179606, 2359252, 4718546, 9437136, 18874318, 37748684, 75497418, 150994888, 301989830, 603979716, 1207959490, 2415919040, 4831838142, 9663676348, 19327352762 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by g.f. 2xy/((1-2x)(1-(2-x)y/(1-x))).
LINKS
S. Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
FORMULA
G.f.: 1 + 2*x*(2-x)^2/((1-2*x)*(1-x)^2).
a(n) = 9*2^n - 2*n - 8.
a(n) = 2 * (A054127(n+1) - 1) for n>0.
PROG
(PARI) vector(50, n, 9*2^n - 2*n - 8) \\ Michel Marcus, Dec 01 2014
CROSSREFS
Cf. A054127.
Sequence in context: A256052 A159741 A302489 * A306056 A129959 A256533
KEYWORD
nonn,easy
AUTHOR
Sergey Kitaev, Nov 13 2004
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 21 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 17:36 EDT 2024. Contains 375853 sequences. (Running on oeis4.)