login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099040
Riordan array (1, 2+2x).
2
1, 0, 2, 0, 2, 4, 0, 0, 8, 8, 0, 0, 4, 24, 16, 0, 0, 0, 24, 64, 32, 0, 0, 0, 8, 96, 160, 64, 0, 0, 0, 0, 64, 320, 384, 128, 0, 0, 0, 0, 16, 320, 960, 896, 256, 0, 0, 0, 0, 0, 160, 1280, 2688, 2048, 512, 0, 0, 0, 0, 0, 32, 960, 4480, 7168, 4608, 1024, 0, 0, 0, 0, 0, 0, 384, 4480, 14336, 18432, 10240, 2048
OFFSET
0,3
COMMENTS
Row sums give A002605. Diagonal sums give A052907.
The Riordan array (1,s+t*x) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
T(n,k) is the number of compositions of n into two types of parts of size 1 and 2 that have exactly k parts. - Geoffrey Critzer, Aug 18 2012.
Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, ...] DELTA [2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 22 2020
FORMULA
Number triangle T(n, k) = 2^k*binomial(k, n-k).
Columns have g.f. (2x+2x^2)^k.
T(n,k) = A026729(n,k)*2^k. - Philippe Deléham, Jul 28 2006
O.g.f.: 1/(1-2*y*x-2*y*x^2). - Geoffrey Critzer, Aug 18 2012.
EXAMPLE
Rows begin {1}, {0,2}, {0,2,4}, {0,0,8,8}, {0,0,4,24,16}, {0,0,0,24,64,32},...
T(3,2)=8 because we have: 1+2,1+2',1'+2,1'+2',2+1,2+1',2'+1,2'+1' where a part of the second type is designated by '. - Geoffrey Critzer, Aug 18 2012
MATHEMATICA
nn = 8; CoefficientList[Series[1/(1 - 2 y x - 2 y x^2), {x, 0, nn}], {x, y}] // Grid (* Geoffrey Critzer, Aug 18 2012 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 23 2004
STATUS
approved