login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185296 Triangle of connection constants between the falling factorials (x)_(n) and (2*x)_(n). 0
1, 0, 2, 0, 2, 4, 0, 0, 12, 8, 0, 0, 12, 48, 16, 0, 0, 0, 120, 160, 32, 0, 0, 0, 120, 720, 480, 64, 0, 0, 0, 0, 1680, 3360, 1344, 128, 0, 0, 0, 0, 1680, 13440, 13440, 3584, 256, 0, 0, 0, 0, 0, 30240, 80640, 48384, 9216, 512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The falling factorial polynomials (x)_n := x*(x-1)*...*(x-n+1), n = 0,1,2,..., form a basis for the space of polynomials. Hence the polynomial (2*x)_n may be expressed as a linear combination of x_0, x_1,...,x_n; the coefficients in the expansion form the n-th row of the table. Some examples are given below.
This triangle is connected to two families of orthogonal polynomials, the Hermite polynomials H(n,x) A060821, and the Bessel polynomials y(n,x)A001498. The first few Hermite polynomials are
... H(0,x) = 1
... H(1,x) = 2*x
... H(2,x) = -2+4*x^2
... H(3,x) = -12*x+8*x^3
... H(4,x) = 12-48*x^2+16*x^4.
The unsigned coefficients of H(n,x) give the nonzero entries of the n-th row of the triangle.
The Bessel polynomials y(n,x) begin
... y(0,x) = 1
... y(1,x) = 1+x
... y(2,x) = 1+3*x+3*x^2
... y(3,x) = 1+6*x+15*x^2+15*x^3.
The entries in the n-th column of this triangle are the coefficients of the scaled Bessel polynomials 2^n*y(n,x).
Also the Bell transform of g(n) = 2 if n<2 else 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, page 158, exercise 7.
LINKS
FORMULA
Defining relation: 2*x*(2*x-1)*...*(2*x-n+1) = sum {k=0..n} T(n, k)*x*(x-1)*...*(x-k+1)
Explicit formula: T(n,k) = (n!/k!)*binomial(k,n-k)*2^(2*k-n). [As defined by Comtet (see reference).]
Recurrence relation: T(n,k) = (2*k-n+1)*T(n-1,k)+2*T(n-1,k-1).
E.g.f.: exp(x*(t^2+2*t)) = 1 + (2*x)*t + (2*x+4*x^2)*t^2/2! + (12*x^2+8*x^3)*t^3/3! + ...
O.g.f. for m-th diagonal (starting at main diagonal m = 0): (2*m)!/m!*x^m/(1-2*x)^(2*m+1).
The triangle is the matrix product [2^k*s(n,k)]n,k>=0 * ([s(n,k)]n,k>=0)^(-1),
where s(n,k) denotes the signed Stirling number of the first kind.
Row sums are [1,2,6,20,76,...] = A000898.
Column sums are [1,4,28,296,...] = [2^n*A001515(n)] n>=0.
EXAMPLE
Triangle begins
n\k|...0.....1.....2.....3.....4.....5.....6
============================================
0..|...1
1..|...0.....2
2..|...0.....2.....4
3..|...0.....0....12.....8
4..|...0.....0....12....48....16
5..|...0.....0.....0...120...160....32
6..|...0.....0.....0...120...720...480....64
..
Row 3:
(2*x)_3 = (2*x)*(2*x-1)*(2*x-2) = 8*x*(x-1)*(x-2) + 12*x*(x-1).
Row 4:
(2*x)_4 = (2*x)*(2*x-1)*(2*x-2)*(2*x-3) = 16*x*(x-1)*(x-2)*(x-3) +
48*x*(x-1)*(x-2)+ 12*x*(x-1).
Examples of recurrence relation
T(4,4) = 5*T(3,4) + 2*T(3,3) = 5*0 + 2*8 = 16;
T(5,4) = 4*T(4,4) + 2*T(4,3) = 4*16 + 2*48 = 160;
T(6,4) = 3*T(5,4) + 2*T(5,3) = 3*160 + 2*120 = 720;
T(7,4) = 2*T(6,4) + 2*T(6,3) = 2*720 + 2*120 = 1680.
MAPLE
T := (n, k) -> (n!/k!)*binomial(k, n-k)*2^(2*k-n):
seq(seq(T(n, k), k=0..n), n=0..9);
PROG
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: 2 if n<2 else 0, 12) # Peter Luschny, Jan 19 2016
CROSSREFS
Cf. A000898 (row sums), A001498, A001515, A059343, A060821.
Sequence in context: A151668 A086151 A099040 * A136717 A261685 A136716
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Feb 20 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 12:06 EDT 2024. Contains 371792 sequences. (Running on oeis4.)